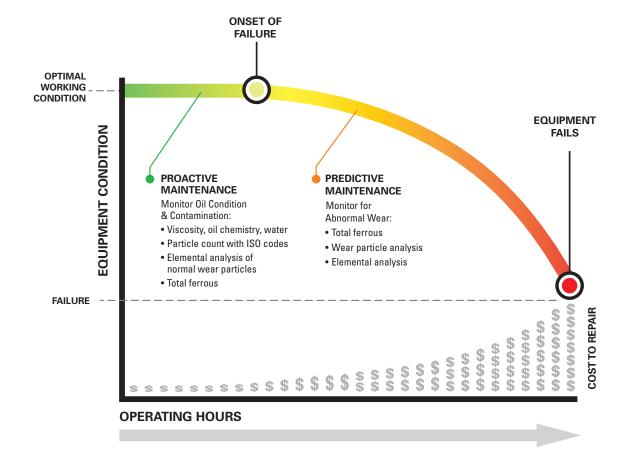


Solutions for Power Generation and Industrial Plants

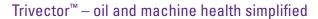
In-service Oil Analysis for Machine Condition Monitoring

Since the reliable operation of high value, fixed assets is critical to all industrial plants, predictive maintenance programs are implemented to manage machinery uptime.


In-service oil analysis is a key machine condition monitoring technique for Condition Based Maintenance (CBM) and Reliability programs. It complements vibration analysis, thermography and other predictive maintenance technologies. In the time it takes external laboratories to return oil sample results, machinery condition can change significantly. On-site oil analysis eliminates this wait and enables immediate decision making.

Corrosion and wear cause surface degradation of the lubricated surfaces in machinery and are the root causes of most mechanically-induced equipment downtime. Corrosion is caused by water or other fluids reacting with metal surfaces, while wear is caused by surface abrasion, adhesion and fatigue.

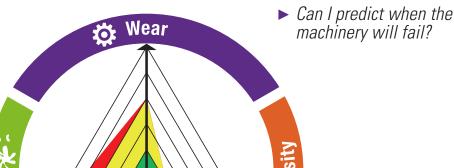
Oil analysis provides early indications of equipment wear and identifies the root causes of corrosion.


The P-F Curve (Potential-Failure Curve) illustrates how in-service oil analysis provides critical information on machine condition in both **Proactive and Predictive** Maintenance periods.

In the Proactive period, oil condition and contamination monitoring help prevent the onset of the root causes of machine failure. In the Predictive period, monitoring the increasing severity of wear particles allows maintenance work orders to be executed for component replacement or repair before catastrophic failure.

As part of a proactive maintenance program, on-site oil analysis delivers rapid results with immediate decision making to:

- Lower operating costs
- Reduce unscheduled downtime
- Increase machine availability
- Extend equipment life
- Decrease total lifecycle equipment costs
- Provide immediate retest capability



The TriVector™ is a simple representation of the integrity of the lubrication system and the health of the machine itself. The Trivector indicates the degree of health in each vector. Each vector is a representation of Alarm Limits based on underlying parameters, such as viscosity, water contamination, acid number, oxidation, total ferrous, particle count and ISO code, large ferrous particle count, etc.

The following questions can be answered:

- ► Is the oil dry?
- ▶ Is the oil clean/ free of dirt?

► Is it the right oil?

► Is the machine healthy?

► Is the oil fit for use?

MiniLab Series

4 simple tests and less than 15 minutes to comprehensive oil analysis

Can be operated on-site by plant staff; no chemist required.

ELEMENTAL ANALYSIS

The elemental analyzer provides measurement of 24 elements to identify individual contaminants, wear metals and the elemental composition of additives.

PARTICLE COUNT AND FERROUS MONITOR

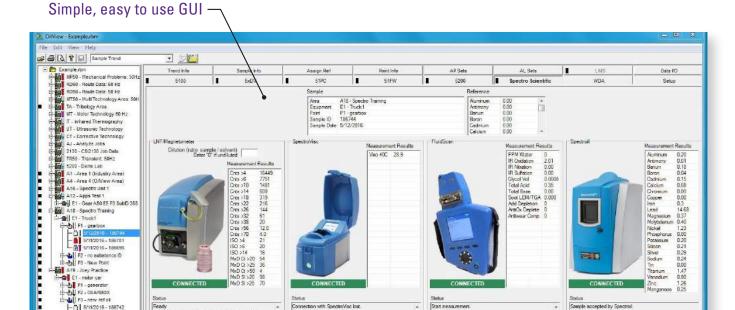
The direct imaging particle counter and ferrous monitor provides particle counts and ISO codes, wear classification, ferrous particle counts & size distribution, and total ferrous measurement.

The portable viscometer provides high accuracy 40°C kinematic viscosity measurements.

Trivector reports on machinery health

Easy to interpret results with Trivector sample and trend reports.

Samp	le Tre	nd - Sp	oectro	Scien	tific		Spectro Scientific
Database	Plant Bo	ston.rbm				Equipment	U1 Turbine - Unit 1 Turbine
Area	U1 - Uni	t One				Point	P1 - Before Filter
Reference Oil	Chevron -	1ST - 32					G Van
Sample Date	11/29/2016	9/27/2016	7/28/2016	4/25/2016	1/3/2016		
Sample ID	16270	16163	15987	15894	15389		
Machine Wear							
Fotal Fe, ppm	0	73	0	0	0		
Fe >25, pml		0	0	0	0		17
Fe >36, pml							
Fe >50. pml					0		
Fe >100, pml		0	0	0	0		Machine Wear
Vear Class							
fxD Ct >20, pml	0	4	3	0	0	1	- Tota Fo
fxD Ct >50, pml	0	0	0	0	0	5	
fxD Ct >100, pml						i	195226 A2700-6
fxD SI >20, pml	0	12	5	20	0	1-2701	
fxD SI >50, pml		0			0	.,	Fc :: 25
fxD SI >100, pml						#1	/
fxD Ft >20. pml		16		50		3.5	7
fxD Ft >50, pml		0		10	0		87537646 6-37700-6
fxD Ft >100, pml							DADE WASHIN TRACKING
					_	9 1	MaD 9: - 50
Contamination						7.1	And the Point of the Andrews
S0 >4	13	18	15		17	2 01 -	1202018 8072018
so>6	- 11	17	15	26	15	994	0-8 Talestro 12780(10)
SO >14		12	14	15	12		Contamination
fxD Ox >20, pml	2	-		105	0	784	* * BD×4
fxD Ox >50, pml		0	0	0	0	8	- 100 × 1
fxD Ox >100, pml	_	2102	1385	1514631	711	3	- 180 × 16
ints >4, pml	71	2102					LOSSING SUPPLIES
Onts >6, pml	20	956	1353	570201	316	10910	
Onts >10, pml	2	33	1033	26763	36	*	Water
	_		_	2395	_	7	· · · · ·
Onts >18, pml	2	15	25 14	135	16	4	sorre o promes
Onts >21, pml Onts >25, pml	2	- 5	14	135	4	1-250	
Onts >25, pml Onts >32, pml	2	2	12	76	4		Chemistry
Onts >32, pml Onts >38, pml	2	- 1	8	45	2	221	· · · · · · · · · · · · · · · · · · ·
	_		80	22.0	_		and the second s
Onts >56, pml	2.0	0.1	8.0	22.0 8.0	0.0	1	
	2.0	0.0	8.0	8.0	0.0		CORDINAL SPECIFIC
Vater, ppm			39	33	٥		N //W45010 115965010
Chemistry						100 MOS	
Nac 40C, cSt	28.5	48.7	30.2	34.5	0.0	CON 100	· ·
AN, mg KON/g	0.00	0.02	0.00	0.00	0.00	100	1032016 6270016
R Oxid., Abs/mm2	1.95	2.11	2.03	2.01	0.00		129010 975000 1090000



CHEMICAL ANALYSIS

The infrared spectrometer measures Total Acid Number (TAN), oxidation and water for machinery oils and hydraulics.

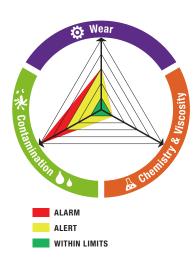
MiniLab Series Software

The MiniLab Series software is based on a Laboratory Information Management System (LIMS) designed for oil analysis. It includes an asset management database, a reference oil database and reports. The software supports multiple databases and is available with single user or optional network configurations.

Asset management

- 🖺 || 5/11/2018 - 188742 - 🗓 || 5/11/2018 - 188739

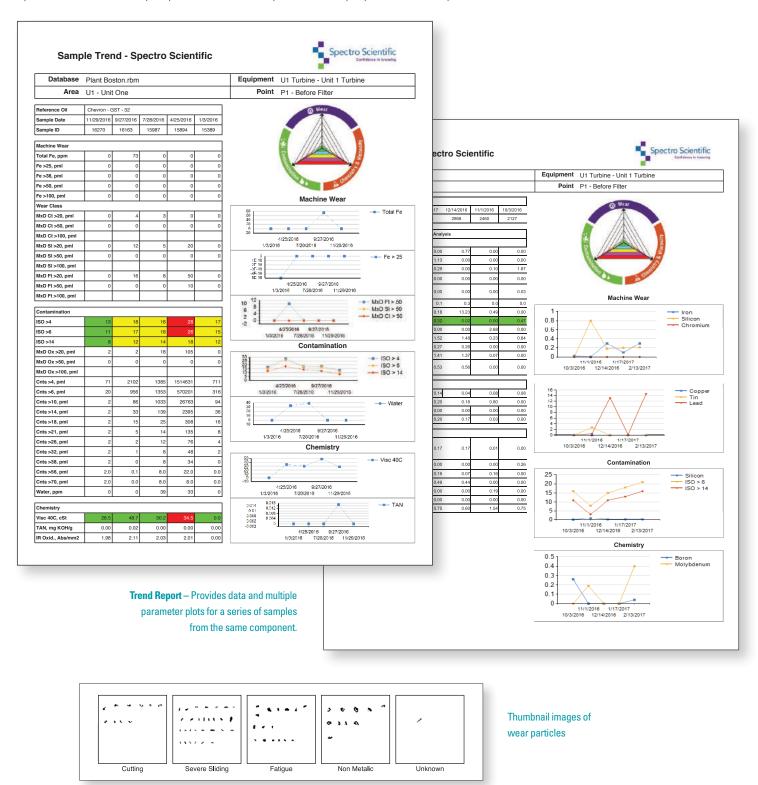
DB Ref DB LIMS Q


- · Each asset in a database is structured as an Area/ Equipment/Point/Sample. A Sample has a time stamp and unique Sample ID and is created at the Point asset level.
- Reference oil database. A reference oil is assigned to each asset to allow trending comparison to new oil properties.
- Schedule oil samples for routine sampling intervals.

Alarms

Color-coded Trivector reports provide a clear snapshot of machinery health by identifying parameters that are outside normal limits. Several parameters in each category of Wear-Chemistry-Contamination are assigned limits. The measured values of these parameters compared to these limits are used to generate the Trivector plot of machinery health.

Alarm Limits are initially established for key parameters from the templates provided in the software, machinery component specifications, industry standard recommendations or from user-defined criteria.


Industry best practice is to refine Alarm Limits based on machine history. Once a series of measurements is made, the initial alarm limits can be analyzed and adjusted.

The Trivector shown has chemistry & viscosity within normal limits, wear in an alert condition, and contamination in an alarm condition.

Reports

Standard and user configurable reports can be automatically generated. The following Spectro Scientific trend report provides a concise report with multiple parameter trend plots.

MiniLab Evolution

5200 MiniLab vs MiniLab 153

The MiniLab Series is the next generation of Trivector on-site oil analyzers replacing the 5200 MiniLab.

	5200 MINILAB	MINILAB 153		
Wear	Large Ferrous content, trending only	Total ferrous particle content (ppm)		
	Wear Debris Analysis (WDA) (Optional)	Wear Debris Analysis (WDA) (Optional)		
		Automatic wear particle shape classification, count & distribution		
		Ferrous particle count & distribution (> 25 µm)		
		Wear elements: Fe, Cu, Pb, Mg, Ag, Sn		
Contamination	Particle count & distribution, ISO codes	Particle count & distribution, ISO codes		
	Emulsified water only	Dissolved water (ppm)		
		Free water (ppm)		
		Glycol contamination for engine oils		
		Contaminate elements: Si, Na		
Chemistry	Dynamic viscosity @ room temperature	Kinematic viscosity @ 40°C		
	Dielectric, trending only	Oxidation		
		Total Acid Number (TAN)		
		Nitration, Sulfation, Anti-wear additive, Total Base Number (TBN), and soot for engine oils		
		Additive elements: Ca, P, Zn, Mg, Ba, Mo		
Application	Typical mineral and synthetic lubricant and hydraulics oils for industrial rotating machinery. Not suitable for backup generators.	Mineral and synthetic lubricant and hydraulics for industrial rotating machinery, plus engine oil for backup generators and ground fleet, and special lubricants such as phosphate esters and PAG.		

Oil library database

The MiniLab Series includes an extensive industrial oil library database to analyze in-service oils as a variety of lubricants and fluids are used in industrial equipment. The following fluid categories can be tested:

FLUIDS	ELEMENTAL	CHEMISTRY	PARTICLE COUNT & FERROUS	VISCOSITY
Mineral oil based Hydraulic fluids and lubricants	Υ	Y	Υ	Υ
Synthetic hydrocarbon based hydraulic fluids and lubricants	Υ	Y	Υ	Υ
Ester-based Lubricant blends	Υ	Υ	Υ	Υ
Oil Soluble Polyglycols (OSP)	Υ	Y	Y	Y
Organic Esters (OE)	Υ	Υ	Υ	Υ
Phosphate Esters (Fyrquel/Skydrol)	Υ	Y	Υ1	Υ
Polyalkylene Glycols (PAG)	Υ	Y	Y ¹	Υ
Poly Alpha Olefins (PAO)	Υ	Y	Υ	Υ
Polyinternal Olefins	Υ	Y	Υ	Υ
Polyol Esters (POE)	Υ	Y	Υ	Υ
Grease	Υ	Υ2	N	N
Mineral Transformer Oil	Υ	N	Υ	Υ

^{1:} Require factory installed Skydrol tube and fitting kits and compatible solvent 2: Oxidation and water (absorbance units) for trending

Typical limits for machinery

The most common oil analysis tests and typical alarm limits for several component types are shown below. Component manufacturers establish alarm limits for their equipment for specified parameters.

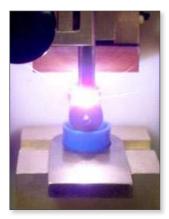
MEASI	JREMENT	TURBINES	GEAR BOXES	HYDRAULICS	ENGINES
*	Particle Count / ISO Code	< 18/14/12	< 19/16/13	< 15/13/11	
*	Water	< 100 ppm	< 1,000 ppm	< 150 ppm	< 2,500 ppm
**	Glycol				0.1% max
*	Fuel dilution				5% max
	Viscosity	+ 15% / - 10% of nominal ISO	+ 15% / - 10% of nominal ISO	+ 15% / - 10% of nominal ISO	+ 20% to - 10% of nominal SAE
	TAN	Baseline + 0.1 mg KOH/g max	Baseline + 1.0 mg KOH/g max	Baseline + 1.0 mg KOH/g max	
	TBN				20% of Baseline mg KOH/g min
* 4	Sodium				< 40 ppm
* 4	Boron				< 20 ppm
	Aluminum, Chromium, Tin				< 15 ppm
	Iron, Lead				< 100 ppm
	Silicon				< 10 ppm
	Copper	< 30 ppm			< 40 ppm
	Zinc	< 2 ppm			

Particle analysis and wearing mechanism

With total ppm, ferrous particles, LaserNet total particles and the wear classifier results, users can make informative actionable decisions by identifying oil drain points, corrosive wear and the onset of a serious abnormal machine wear mechanism.

MONITORING	TOTAL Fe PPM	FERROUS PARTICLES >20 µm	LASERNET LARGE PARTICLES >20 µm	LASERNET CLASSIFIER
	Establish constant wear rate	Dynamic equilibrium levels	Dynamic equilibrium levels	Dynamic equilibrium levels
Oil change interval	Reaches limit level	NA	NA	NA
Onset of corrossive wear	Increase in rate	No change	No change	No change
Transition into abnormal wear mode	Increase in rate	Increase	Increase	Increase – cutting/sliding/fatigue
Ongoing severe wear mechanism (breakdown shear mixed layer)	Same or decrease in rate	Increase	Increase	Increase — cutting /sliding/ fatigue
Temporary wear rate change due to increased load and speed	Increase in rate	No change	No change	No change
Onset of external contamination	No change	No change	Increase	Increase – non-metallic
3 Body abrasive mechanism iron	No change	Increase	Increase	Increase – cutting/sliding
3 Body abrasive mechanism non-ferrous (copper, aluminum)	No change	No change	Increase	Increase — cutting/sliding
Onset of rolling contact failure	No change	Increase	Increase	Increase – fatigue

> Wear particle by metal type

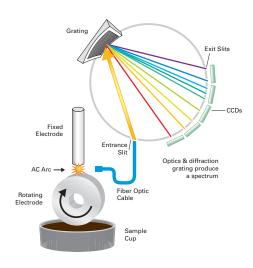

> Contamination ID by source

Oil additive levels

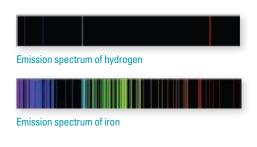
SpectrOil 100 Series instrument can be purchased separately.

Sample consumed using RDE technology is optically analyzed with AE spectroscopy to detect elements.

Elemental Analysis


The SpectrOil 100 Series analyzes small particulate wear, lubricant additives and contaminants for trace quantities of elements dissolved or suspended as fine particles. Using the proven rotating disc electrode (RDE) technique, the SpectrOil 100 Series has become the workhorse of industrial, commercial and military oil analysis laboratories requiring rapid analysis of wear metals, contaminants and additives in lubricants.

Coolant, wash-down water and JOAP calibrations are available in addition to in-service lubricating oil and hydraulic fluid analysis.


- Measures ppm levels of up to 32 elements in less than 30 seconds
- Easy to operate no sample preparation, gases, coolants or solvents needed
- Compliant with ASTM D6595 for used oil analysis

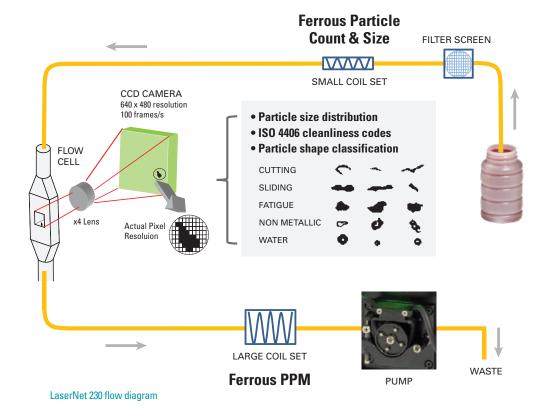
On-site oil analysis provides greater insight into contaminant sources by linking elemental parameters with the probable source:

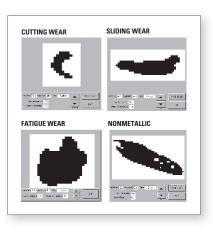
ELEMENT	Oil Chemistry – metallic additives possible sources
Sodium	Corrosion inhibitor additive, also indicates coolant leak into oil, can also be road salt, sea water, ingested dirt
Boron	Corrosion inhibitor additive, antiwear/antioxidant additive; can indicate coolant leak, grease contamination
Magnesium	Detergent/dispersive additive, can also be alloying element in steels
Calcium	Detergent/dispersant additive, alkaline reserve additive for high sulfur fueled engines, can be grease contamination,
Molybdenum	Solid/liquid antiwear additive, alloy in bearing and piston rings
Barium	Corrosion inhibitors, detergents, rust inhibitors
Zinc	Antiwear, corrosion inhibitors, anti-oxidants, alloying element for bearings, thrust washers, galvanized cases
Phosphorus	Antiwear, corrosion inhibitors, anti-oxidants additives, EP additives

SpectrOil 100 Series rotating disc electrode optical emission spectrometer schematic

Particle Count and Ferrous Monitor

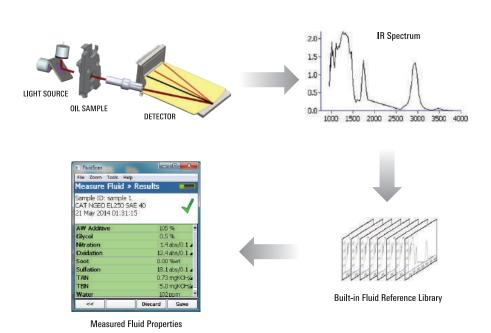
The LaserNet 200 Series provides particle counts and codes, large wear particle classification and ferrous wear monitoring.


- Particle count, size distribution and codes (ISO 4406, NAS 1638, NAVAIR 01-1A-17, SAE AS 4059, GOST, ASTM D6786, HAL, and user defined bins).
- Differentiates contaminants (silica and fibers from machine wear metal)
- Classifies wear particles, stores images, and reports particle count and size distribution for each wear type of Cutting, Sliding, Fatigue, Fibers and Nonmetallics
- Ferrous Monitor measures total ferrous content in the sample and provides Ferrous particle count and size distribution
- Widest range up to 5,000,000 particles/ml
- Test oil viscosity up to ISO320 without dilution
- Images through dark fluids containing up to 2% soot
- Error corrections for water and air bubbles


Options include an autosampler for high throughput sample processing as well as configurations without the ferrous monitor and wear classification.

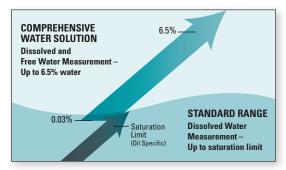
LaserNet 200 Series instrument can be purchased separately.

FluidScan 1000 Series handheld infrared spectrometer can be purchased separately.


The oil library contains various categories of fluids. The industrial library provided with the MiniLab series includes the Comprehensive Water Solution and the Industrial Fluid Oil Library.

	Industrial
CATEGORY	Fluid Library
ASTM EP Gear/Hydro	~
ASTM Petroleum Crankcase	V
ASTM Polyol Ester	V
BIODIESEL FEEDSTOCK	
CHILLER	V
ENGINE	V
ENGINE-HEAVY DUTY	
ENGINE-HFO	
ENGINE-NAT GAS	
ETHANOL IN GASOLINE	
FAME	
FAME in DIESEL	
GEAR-PRESSURE	V
GEAR-SPLASH	V
HEAT TRANSFER	V
HYDRAULIC	V
HYDRAULIC-FIRE RESISTANT	V
SLIDEWAY	V
TRANSMISSION	
TURBINE-AERO	V
TURBINE-CCGT	V
TURBINE-STEAM	V

Chemical Analysis


The FluidScan® 1000 Series oil chemistry analyzer determines when in-service oil is no longer fit for use due to oil degradation or the ingress of water or glycol. It is fast and easy to use, with just one drop of oil needed for the sample and less than one minute for test results. The analyzer includes an extensive oil library; additional oils can be added by the user.

- Compliant to ASTM D7889 "Standard Test Method for Field Determination of In-service Fluid Properties Using IR Spectroscopy"
- High correlation to TAN and TBN laboratory tests conducted with ASTM D664 and D4739
- Patented, Comprehensive Water Measurement option extends range to 6.5%. (Included with all MiniLab systems.)

FluidScan operating principle

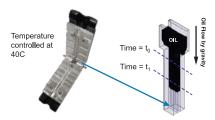
Water measurement range

Viscosity

The MiniVisc 3000 Series provides fast, accurate 40°C kinematic viscosity measurements for easy detection of viscosity variations caused by contamination, mix-up and oil degradation.

- Solvent free, portable, and easy to use
- Viscosity range 1-700 cSt @40°C
- Accuracy +/- 3% to NIST viscosity standards
- Fast results: ISO 15 ~10 seconds, ISO 320 ~ 3 minutes

For machinery oils, the 40°C kinematic viscosity is used as the reference value. Engine oils operate at higher temperatures than rotating machinery, so they require V100°C kinematic viscosity. The Viscosity Index of an oil is a parameter that relates the V40°C measurement value to the V100°C value. A reference Viscosity Index value can be entered in the viscometer and both the measured V40°C viscosity and the calculated V100°C viscosity values are displayed.


Positive displacement pipette

Open the two parallel plates for easy cleaning.

MiniVisc 3000 Series portable viscometer can be purchased separately.

MiniVisc 3000 Series kinematic viscometer schematic

Total Ferrous

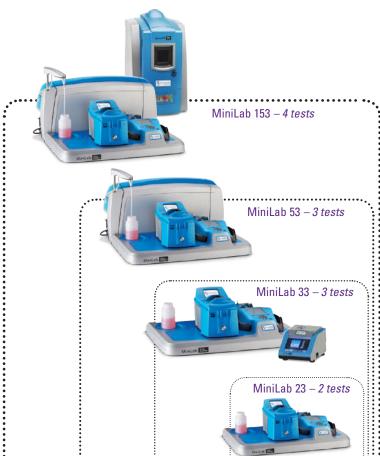
The MiniLab 33 includes the FerroCheck, a portable ferrous analyzer that measures the total ferrous content of a sample. It is easy to operate; simply insert the sample vial with fluid sample to measure.

- Small sample requirement with results in 30 seconds
- No sample preparation and no solvents required to clean
- Measurement range 0-10,000 ppm for oil, 10-150,000 ppm for grease

Grease boat and sample introduction vials

FerroCheck 2000 Series portable ferrous analyzer can be purchased separately.

Four MiniLab Options. Which One is for You?


MiniLab 153 - provides a complete oil analysis report with elemental analysis, comprehensive wear particle analysis, solid and water contamination, fluid chemistry and viscosity. It is ideal for large power plants and manufacturing plants with many assets.

MiniLab 53 - provides a Trivector report with comprehensive wear particle analysis, solid and water contamination, fluid chemistry and viscosity.

MiniLab 33 — provides a basic Trivector report with total ferrous wear, fluid chemistry, water in oil and viscosity.

MiniLab 23 – provides basic oil condition information including viscosity, chemistry and water in oil.

	PARAMETER	Elemental ASTM METHOD D6595	Particle Count and Ferrous	Ferrous ASTM METHOD D8120	Viscosity ASTM METHOD D8092	Chemical ASTM METHOD D7889
Contamination	Particle count and ISO codes	70111 METHOD DOGGO	✓	NOTHINE THOS BOILES	70111 IIIE IIIOS SOCIE	Norm memos system
*	Non-metallic particle count, distribution and images		V			
	Sodium and Silicon	V				
	Total Water					V
Chemistry	Viscosity				V	
Δ	Total Acid Number (TAN)					✓
	Oxidation					✓
	Total Base Number (TBN), Oxidation, Nitration, and Sulfation for engine oils					V
	Magnesium, Calcium, Barium, Zinc, Molybdenum, and Phosphorus	~				
Wear	Wear particle images, counts and distribution		✓			
❖	Total Ferrous content, ppm		✓	✓		
	Ferrous particle count and size distribution		V			
	Copper, Silver, Chromium, Titanium, Aluminum, Nickel, Iron, Manganese, Lead, Tin, Cadmium, and Vanadium	✓				

Accessories & Consumables

Sample Preparation Equipment

Sample preparation equipment such as the Homogenizer, Ultrasonic Deaerator, Electrode Sharpener and Consumables for 100 samples is included with each MiniLab 153 system.

SAMPLE PREPARATION - 3 SIMPLE STEPS

- 1. Sharpen electrode
- 2. Homogenize the sample for better water measurement
- 3. Ultrasonically degas the sample for particle analysis

Consumables

Spectro Scientific consumables are selected and carefully tested with all Spectro Scientific instruments to ensure consistent, repeatable results. Always use Spectro Scientific certified consumables for best results.

Validation Standards and ASTM Standards

Validation standards are supplied for all MiniLab Series instrumentation. These NIST traceable standards support internal quality programs and compare current instrument performance against factory calibration.

All instruments in the MiniLab Series have an associated ASTM Standard Test Method.

- PARTICLE COUNTER STANDARD LNF-509 calibration checkfluid
- SPECTROMETER STANDARDS CS-24 100 ppm, 900ppm, baseoil
- FERROUS PARTICLE ANALYZER **LNF-545 Ferrous Validation** Standard for Magnetometer
- Total Ferrous Content. nominal 100 ppm
- Large Ferrous particle count, nominal 42 µm particles
- FLUIDSCAN IR CHECK FLUID FL310 FluidScan CheckFluid
- VISCOSITY STANDARDS PV1025 Visc 30 standard PV1026 Visc120 standard

Accessories

A variety of accessories to support your oil analysis program are available, from drawing a sample from an oil sump to preparing it for analysis.

Service Contracts and Repair

Spectro Scientific's service offerings for the MiniLab Series include:

System Installation & Training for instrument operation and routine maintenance.

Service Contracts for extended warranty and preventive maintenance.

Field Repair by certified customer service engineers on site.

In-house Instrument Calibration, Maintenance, Repair, and Upgrades performed at our facility near Boston, MA.

MiniLab Series Product Information

PART NUMBER	
800-00029	MiniLab 153 with OilView LIMS and PC, 115 VAC, 60 Hz.
800-00027	MiniLab 153, 115 VAC, 60 Hz. Requires OilView LIMS.
800-00030	MiniLab 153 with OilView LIMS and PC, 220 VAC, 50 Hz.
800-00028	MiniLab 153, 220 VAC, 50 Hz. Requires OilView LIMS.
800-00076	MiniLab 153 with OilView LIMS and PC, 240 VAC, 60 Hz.
800-00079	Minilab 153, 240 VAC, 60 Hz. Requires Oilview LIMS.
800-00077	MiniLab 153 with OilView LIMS and PC, 120 VAC, 50 Hz.
800-00078	Minilab 153, 120 VAC, 50 Hz. Requires Oilview LIMS.
800-00017	MiniLab 53, 115 VAC, 50/ 60 Hz. Requires OilView LIMS.
800-00018	MiniLab 53, 220 VAC, 50/60 Hz. Requires OilView LIMS.
800-00025	MiniLab 53, 115 VAC, 50/60 Hz with OilView LIMS
800-00026	MiniLab 53, 220 VAC, 50/60 Hz with OilView LIMS.
800-00059	MiniLab 33, 115 VAC, 50/60 Hz. Requires OilView LIMS.
800-00060	MiniLab 33, 220 VAC, 50/60 Hz. Requires OilView LIMS.
800-00061	MiniLab 33, 115 VAC, 50/60 Hz with OilView LIMS.
800-00062	MiniLab 33, 220 VAC, 50/60 Hz with OilView LIMS.
800-00037	MiniLab 23, 115 VAC, 50/60 Hz. Requires Oilview LIMS.
800-00038	MiniLab 23, 220 VAC, 50/60 Hz. Requires Oilview LIMS.
800-00041	MiniLab 23, 115 VAC, 50/60 Hz with Oilview LIMS.
800-00042	MiniLab 23, 220 VAC, 50/60 Hz with Oilview LIMS.

*OilView LIMS	v5.61	or v5.7 is	required for	or MiniLab	operation.

Onview Envie vo. or or vo. 7 is required for Williams operation.					
ACCESSORIES AND CO	ACCESSORIES AND CONSUMABLES				
800-00031	MiniLab 153 Standard Accessories Kit				
800-00032	MiniLab 153 Consumables Kit for 500 samples				
800-00019	MiniLab 53 Standard Accessories Kit				
400-00088	MiniLab 53 Consumables Kit for 500 samples				
800-00063	MiniLab 33 Standard Accessories Kit				
800-00064	MiniLab 33 Consumables Kit for 500 samples				
SA1022	MiniLab 23 Standard Accessories Kit				
800-00040	MiniLab 23 Consumables Kit for 500 samples				
600-00123	Minilab 153 Validation standards kit				
600-00122	Minilab 53 Validation standards kit				
600-00120	Minilab 33 Validation standards kit				
600-00119	Minilab 23 Validation standards kit				
800-00073	MiniLab 153 with Skydrol kit standard accessories				
800-00072	MiniLab 53 with Skydrol kit standard accessories				
LNF-905	Skydrol kit (phosphate ester fluids) for LaserNet 230 only; factory installation				
FL360	All Libraries license for FluidScan				

PRODUCT INFORMATION Applications Mineral and synthetic lubricants including

Applications	Mineral and synthetic lubricants including gear, engine, hydraulic, turbine and distillate fuels
Methodology	ASTM D7596, ASTM D7889, ASTM 40831 ASTM D6595
Calibration	Factory calibrated, field calibration not required. Validation and standardization fluids supplied.

OPERATIONAL SPECIFICATIONS

Environmental Requirements	5-40°C ambient temperature, 10-80% RH non-condensing, 2000 m maximum altitude
Sample Volume	30-50 ml, varies with viscosity
Solvents	Lamp oil, odorless kerosene, or Electron 22

USER INTERFACE SPECIFICATIONS

Software/Operating System

Personal computer with Windows 10 Pro or Windows 7 Pro, 32 or 64 bit, US English version. Quad core microprocessor speed 2.6 GHz or higher and 8 GB RAM minimum.

POWER REQUIREMENTS

Power MiniLab 153: 1 Phase power, 1200 W (max)
MiniLab 53/33/23: 1 Phase power, 110 W (max)

MECHANICAL SPECIFICATIONS

MECHANICAL SPECIFICATIONS			
Dimensions	MiniLab 153: 71 cm x 214 cm x 66 cm (28" x 84" x 26	ì")	
(H x W x D)	MiniLab 53: 35 cm x 50 cm x 53 cm (13.8" x 19.7" x	21")	
	Minilab 33: 14 cm x 69 cm x 48 cm (5.5 x 27" x 19")	
	Minilab 23: 10 cm x 51 cm x 48 cm (4" x 20" x 19")		
Weight	MiniLab 153: 84 kg (185 lbs)		
	MiniLab 53: 14 kg (31 lbs)		
	MiniLab 33: 9 kg (22 lbs)		
	MiniLab 23: 6 kg (14 lbs)		

COMPLIANCE

CE Mark-EMC directive, RoHS

ANALYTICAL RANGE AND REPEATAB	ILITY	
Output	Analytical Range	Repeatability
Particle count and size distribution ISO codes per 4402/4406, other codes selectable	Particle count 4-100 µm	≤ 6% RSD
Ferrous particle count and size distribution	25-100 μm	≤ 5% RSD
Total Ferrous, ppm	10-2,000 ppm	≤ 5% RSD
Wear particle counts and size distribution by wear mode: fatique, sliding, cutting,non-metallic, fibers	20-100 μm	
40°C Kinematic viscosity, cSt	1-320 cSt at 40°C 320-700 cSt at 40°C	≤ 3% RSD ≤ 5% RSD
Total Acid Number (TAN), mg KOH/g	0-6 mg KOH/g	≤ 3% RSD
Total Base Number (TBN), mg KOH/g	0-70 mg KOH/g	≤ 3% RSD
Oxidation, abs/0.1 mm	5-32	≤ 3% RSD
Nitration, abs/cm	0.5-18	≤ 3% RSD
Sulfation, abs/0.1 mm	16-39	≤ 3% RSD
Water, dissolved ppm	100 ppm-saturation*	≤ 3% RSD
Water, free, ppm	0.03-6.5% (300- 65,000 ppm)	≤ 25% RSD
Elemental concentration of 23 elements, ppm	Elemental analysis range and repeatability vary with element	

^{*}Oil specific. RSD = Relative Standard Deviation.

SUPPORT RESOURCES	
SVC019	Service Contract – MiniLab 33
SVC015	Service Contract – MiniLab 53
SVC057	Service Contract – MiniLab 153

Spectro Scientific offers On- and Off-site Product Training, Field Repair, In-house Instrument Calibration, Maintenance, Repair, and Upgrades and Service Contracts. See previous page for more information about service and customer support.

To learn more about Spectro Scientific products please call 978-431-1120 or visit us online at www.spectrosci.com.

